Timea Turdean

Ready to connect to the Semantic Web – now what?

As an open data fan or as someone who is just looking to learn how to publish data on the Web and distribute it through the Semantic Web you will be facing the question “How to describe the dataset that I want to publish?” The same question is asked also by people who apply for a publicly funded project at the European Commission and want to have a Data Management plan. Next we are going to discuss possibilities which help describe the dataset to be published.  Continue reading

Thomas Thurner

ADEQUATe for the Quality of Open Data

The ADEQUATe project builds on two observations: An increasing amount of Open Data becomes available as an important resource for emerging businesses and furtheron the integration of such open, freely re-usable data sources into organisations’ data warehouse and data management systems is seen as a key success factor for competitive advantages in a data-driven economy. Continue reading

Thomas Thurner

Automatic Semantic Tagging for Drupal CMS launched

REEEP [1] and CTCN [2] have recently launched Climate Tagger, a new tool to automatically scan, label, sort and catalogue datasets and document collections. Climate Tagger now incorporates a Drupal Module for automatic annotation of Drupal content nodes. Climate Tagger addresses knowledge-driven organizations in the climate and development arenas, providing automated functionality to streamline, catalogue and link their Climate Compatible Development data and information resources.

Climate Tagger

Climate Tagger for Drupal is a simple, FREE and easy-to-use way to integrate the well-known Reegle Tagging API [3], originally developed in 2011 with the support of CDKN [4], (now part of the Climate Tagger suite as Climate Tagger API) into any web site based on the Drupal Content Management System [5]. Climate Tagger is backed by the expansive Climate Compatible Development Thesaurus, developed by experts in multiple fields and continuously updated to remain current (explore the thesaurus at http://www.reegle.info/glossary). The thesaurus is available in English, French, Spanish, German and Portuguese. And can connect content on different portals published in these different languages.

Climate Tagger for Drupal can be fine-tuned to individual (and existing) configuration of any Drupal 7 installation by:

  • determining which content types and fields will be automatically tagged
  • scheduling “batch jobs” for automatic updating (also for already existing contents; where the option is available to re-tag all content or only tag with new concepts found via a thesaurus expansion / update)
  • automatically limit and manage volumes of tag results based on individually chosen scoring thresholds
  • blending with manual tagging
click to enlarge

click to enlarge

“Climate Tagger [6] brings together the semantic power of Semantic Web Company’s PoolParty Semantic Suite [7] with the domain expertise of REEEP and CTCN, resulting in an automatic annotation module for Drupal 7 with an accuracy never seen before” states Martin Kaltenböck, Managing Partner of Semantic Web Company [8], which acts as the technology provider behind the module.

Climate Tagger is the result of a shared commitment to breaking down the ‘information silos’ that exist in the climate compatible development community, and to provide concrete solutions that can be implemented right now, anywhere” said REEEP Director General Martin Hiller. “Together with CTCN and SWC laid the foundations for a system that can be continuously improved and expanded to bring new sectors, systems and organizations into the climate knowledge community.”

For the Open Data and Linked Open Data communities, a Climate Tagger plugin for CKAN [9] has also been published, which was developed by developed by NREL [10] in cooperation with CTCN’s support, harnessing the same taxonomy and expert vetted thesaurus behind the Climate Tagger, helping connect open data to climate compatible content through the simultaneous use of these tools.

REEEP Director General Martin Hiller and CTCN Director Jukka Uosukainen will be talking about Climate Tagger at the COP20 side event hosted by the Climate Knowledge Brokers Group in Lima [11], Peru, on Monday, December 1st at 4:45pm.

Further reading and downloads

About REEEP:

REEEP invests in clean energy markets in developing countries to lower CO2 emissions and build prosperity. Based on strategic portfolio of high impact projects, REEEP works to generate energy access, improve lives and economic opportunities, build sustainable markets, and combat climate change.

REEEP understands market change from a practice, policy and financial perspective. We monitor, evaluate and learn from our portfolio to understand opportunities and barriers to success within markets. These insights then influence policy, increase public and private investment, and inform our portfolio strategy to build scale within and replication across markets. REEEP is committed to open access to knowledge to support entrepreneurship, innovation and policy improvements to empower market shifts across the developing world.

About the CTCN

The Climate Technology Centre & Network facilitates the transfer of climate technologies by providing technical assistance, improving access to technology knowledge, and fostering collaboration among climate technology stakeholders. The CTCN is the operational arm of the UNFCCC Technology Mechanism and is hosted by the United Nations Environment Programme (UNEP) in collaboration with the United Nations Industrial Development Organization (UNIDO) and 11 independent, regional organizations with expertise in climate technologies.

About Semantic Web Company

Semantic Web Company (SWC, http://www.semantic-web.at) is a technology provider headquartered in Vienna (Austria). SWC supports organizations from all industrial sectors worldwide to improve their information and data management. Their products have outstanding capabilities to extract meaning from structured and unstructured data by making use of linked data technologies.

Andreas Blumauer

From Taxonomies over Ontologies to Knowledge Graphs

With the rise of linked data and the semantic web, concepts and terms like ‘ontology’, ‘vocabulary’, ‘thesaurus’ or ‘taxonomy’ are being picked up frequently by information managers, search engine specialists or data engineers to describe ‘knowledge models’ in general. In many cases the terms are used without any specific meaning which brings a lot of people to the basic question:

What are the differences between a taxonomy, a thesaurus, an ontology and a knowledge graph?

This article should bring light into this discussion by guiding you through an example which starts off from a taxonomy, introduces an ontology and finally exposes a knowledge graph (linked data graph) to be used as the basis for semantic applications.

1. Taxonomies and thesauri

Taxonomies and thesauri are closely related species of controlled vocabularies to describe relations between concepts and their labels including synonyms, most often in various languages. Such structures can be used as a basis for domain-specific entity extraction or text categorization services. Here is an example of a taxonomy created with PoolParty Thesaurus Server which is about the Apollo programme:

Apollo programme taxonomyThe nodes of a taxonomy represent various types of ‘things’ (so called ‘resources’): The topmost level (orange) is the root node of the taxonomy, purple nodes are so called ‘concept schemes’ followed by ‘top concepts’ (dark green) and ordinary ‘concepts’ (light green). In 2009 W3C introduced the Simple Knowledge Organization System (SKOS) as a standard for the creation and publication of taxonomies and thesauri. The SKOS ontology comprises only a few classes and properties. The most important types of resources are: Concept, ConceptScheme and Collection. Hierarchical relations between concepts are ‘broader’ and its inverse ‘narrower’. Thesauri most often cover also non-hierarchical relations between concepts like the symmetric property ‘related’. Every concept has at least on ‘preferred label’ and can have numerous synonyms (‘alternative labels’). Whereas a taxonomy could be envisaged as a tree, thesauri most often have polyhierarchies: a concept can be the child-node of more than one node. A thesaurus should be envisaged rather as a network (graph) of nodes than a simple tree by including polyhierarchical and also non-hierarchical relations between concepts.

2. Ontologies

Ontologies are perceived as being complex in contrast to the rather simple taxonomies and thesauri. Limitations of taxonomies and SKOS-based vocabularies in general become obvious as soon as one tries to describe a specific relation between two concepts: ‘Neil Armstrong’ is not only unspecifically ‘related’ to ‘Apollo 11’, he was ‘commander of’ this certain Apollo mission. Therefore we have to extend the SKOS ontology by two classes (‘Astronaut’ and ‘Mission’) and the property ‘commander of’ which is the inverse of ‘commanded by’.

Apollo ontology relationsThe SKOS concept with the preferred label ‘Buzz Aldrin’ has to be classified as an ‘Astronaut’ in order to be described by specific relations and attributes like ‘is lunar module pilot of’ or ‘birthDate’. The introduction of additional ontologies in order to expand expressivity of SKOS-based vocabularies is following the ‘pay-as-you-go’ strategy of the linked data community. The PoolParty knowledge modelling approach suggests to start first with SKOS to further extend this simple knowledge model by other knowledge graphs, ontologies and annotated documents and legacy data. This paradigm could be memorized by a rule named ‘Start SKOS, grow big’.

3. Knowledge Graphs

Knowledge graphs are all around (e.g. DBpedia, Freebase, etc.). Based on W3C’s Semantic Web Standards such graphs can be used to further enrich your SKOS knowledge models. In combination with an ontology, specific knowledge about a certain resource can be obtained with a simple SPARQL query. As an example, the fact that Neil Armstrong was born on August 5th, 1930 can be retrieved from DBpedia. Watch this YouTube video which demonstrates how ‘linked data harvesting’ works with PoolParty.

Knowledge graphs could be envisaged as a network of all kind things which are relevant to a specific domain or to an organization. They are not limited to abstract concepts and relations but can also contain instances of things like documents and datasets.

Why should I transform my content and data into a large knowledge graph?

The answer is simple: to being able to make complex queries over the entirety of all kind of information. By breaking up the data silos there is a high probability that query results become more valid.

With PoolParty Semantic Integrator, content and documents from SharePoint, Confluence, Drupal etc. can be tranformed automatically to integrate them into enterprise knowledge graphs.

Taxonomies, thesauri, ontologies, linked data graphs including enterprise content and legacy data – all kind of information could become part of an enterprise knowledge graph which can be stored in a linked data warehouse. Based on technologies like Virtuoso, such data warehouses have the ability to serve as a complex question answering system with excellent performance and scalability.

4. Conclusion

In the early days of the semantic web, we’ve constantly discussed whether taxonomies, ontologies or linked data graphs will be part of the solution. Again and again discussions like ‘Did the current data-driven world kill ontologies?‘ are being lead. My proposal is: try to combine all of those. Embrace every method which makes meaningful information out of data. Stop to denounce communities which don’t follow the one or the other aspect of the semantic web (e.g. reasoning or SKOS). Let’s put the pieces together – together!